Nanowire transistors without junctions.

نویسندگان

  • Jean-Pierre Colinge
  • Chi-Woo Lee
  • Aryan Afzalian
  • Nima Dehdashti Akhavan
  • Ran Yan
  • Isabelle Ferain
  • Pedram Razavi
  • Brendan O'Neill
  • Alan Blake
  • Mary White
  • Anne-Marie Kelleher
  • Brendan McCarthy
  • Richard Murphy
چکیده

All existing transistors are based on the use of semiconductor junctions formed by introducing dopant atoms into the semiconductor material. As the distance between junctions in modern devices drops below 10 nm, extraordinarily high doping concentration gradients become necessary. Because of the laws of diffusion and the statistical nature of the distribution of the doping atoms, such junctions represent an increasingly difficult fabrication challenge for the semiconductor industry. Here, we propose and demonstrate a new type of transistor in which there are no junctions and no doping concentration gradients. These devices have full CMOS functionality and are made using silicon nanowires. They have near-ideal subthreshold slope, extremely low leakage currents, and less degradation of mobility with gate voltage and temperature than classical transistors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Manufacturing of Field-Effect Heterotransistors without P-n-junctions to Optimize Decreasing their Dimensions

It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions framework their system). Due to the optimization, one can also obtain increas...

متن کامل

Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors.

We demonstrate lithographically fabricated Si nanowire field effect transistors (FETs) with long Si nanowires of tiny cross sectional size (∼3-5 nm) exhibiting high performance without employing complementarily doped junctions or high channel doping. These nanowire FETs show high peak hole mobility (as high as over 1200 cm(2)/(V s)), current density, and drive current as well as low drain leaka...

متن کامل

Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays.

We report electrical properties of hybrid structures consisting of arrays of nanowire field-effect transistors integrated with the individual axons and dendrites of live mammalian neurons, where each nanoscale junction can be used for spatially resolved, highly sensitive detection, stimulation, and/or inhibition of neuronal signal propagation. Arrays of nanowire-neuron junctions enable simultan...

متن کامل

Oxygen plasma exposure effects on indium oxide nanowire transistors.

In(2)O(3) nanowire transistors are fabricated with and without oxygen plasma exposure of various regions of the nanowire. In two-terminal devices, exposure of the channel region results in an increased conductance of the channel region. For In(2)O(3) nanowire transistors in which the source/drain regions are exposed to oxygen plasma, the mobility, on-off current ratio and subthreshold slope, ar...

متن کامل

Self-limited plasmonic welding of silver nanowire junctions.

Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature nanotechnology

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2010